Learning Neural Surrogate Model for Warm-Starting Bayesian Optimization

ICLR 2020 Haotian ZhangJian SunZongben Xu

Bayesian optimization is an effective tool to optimize black-box functions and popular for hyper-parameter tuning in machine learning. Traditional Bayesian optimization methods are based on Gaussian process (GP), relying on a GP-based surrogate model for sampling points of the function of interest... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper