Learning nonlinear dynamical systems from a single trajectory

We introduce algorithms for learning nonlinear dynamical systems of the form $x_{t+1}=\sigma(\Theta^{\star}x_t)+\varepsilon_t$, where $\Theta^{\star}$ is a weight matrix, $\sigma$ is a nonlinear link function, and $\varepsilon_t$ is a mean-zero noise process. We give an algorithm that recovers the weight matrix $\Theta^{\star}$ from a single trajectory with optimal sample complexity and linear running time. The algorithm succeeds under weaker statistical assumptions than in previous work, and in particular i) does not require a bound on the spectral norm of the weight matrix $\Theta^{\star}$ (rather, it depends on a generalization of the spectral radius) and ii) enjoys guarantees for non-strictly-increasing link functions such as the ReLU. Our analysis has two key components: i) we give a general recipe whereby global stability for nonlinear dynamical systems can be used to certify that the state-vector covariance is well-conditioned, and ii) using these tools, we extend well-known algorithms for efficiently learning generalized linear models to the dependent setting.

PDF Abstract L4DC 2020 PDF L4DC 2020 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods