Paper

Learning Nonlinear Functions Using Regularized Greedy Forest

We consider the problem of learning a forest of nonlinear decision rules with general loss functions. The standard methods employ boosted decision trees such as Adaboost for exponential loss and Friedman's gradient boosting for general loss. In contrast to these traditional boosting algorithms that treat a tree learner as a black box, the method we propose directly learns decision forests via fully-corrective regularized greedy search using the underlying forest structure. Our method achieves higher accuracy and smaller models than gradient boosting (and Adaboost with exponential loss) on many datasets.

Results in Papers With Code
(↓ scroll down to see all results)