Learning nonparametric ordinary differential equations from noisy data

30 Jun 2022  ·  Kamel Lahouel, Michael Wells, Victor Rielly, Ethan Lew, David Lovitz, Bruno M. Jedynak ·

Learning nonparametric systems of Ordinary Differential Equations (ODEs) dot x = f(t,x) from noisy data is an emerging machine learning topic. We use the well-developed theory of Reproducing Kernel Hilbert Spaces (RKHS) to define candidates for f for which the solution of the ODE exists and is unique. Learning f consists of solving a constrained optimization problem in an RKHS. We propose a penalty method that iteratively uses the Representer theorem and Euler approximations to provide a numerical solution. We prove a generalization bound for the L2 distance between x and its estimator and provide experimental comparisons with the state-of-the-art.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here