Learning of Agent Capability Models with Applications in Multi-agent Planning

4 Nov 2014  ·  Yu Zhang, Subbarao Kambhampati ·

One important challenge for a set of agents to achieve more efficient collaboration is for these agents to maintain proper models of each other. An important aspect of these models of other agents is that they are often partial and incomplete... Thus far, there are two common representations of agent models: MDP based and action based, which are both based on action modeling. In many applications, agent models may not have been given, and hence must be learnt. While it may seem convenient to use either MDP based or action based models for learning, in this paper, we introduce a new representation based on capability models, which has several unique advantages. First, we show that learning capability models can be performed efficiently online via Bayesian learning, and the learning process is robust to high degrees of incompleteness in plan execution traces (e.g., with only start and end states). While high degrees of incompleteness in plan execution traces presents learning challenges for MDP based and action based models, capability models can still learn to {\em abstract} useful information out of these traces. As a result, capability models are useful in applications in which such incompleteness is common, e.g., robot learning human model from observations and interactions. Furthermore, when used in multi-agent planning (with each agent modeled separately), capability models provide flexible abstraction of actions. The limitation, however, is that the synthesized plan is incomplete and abstract. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here