Learning Pairwise Graphical Models with Nonlinear Sufficient Statistics

21 Nov 2013  ·  Xiao-Tong Yuan, Ping Li, Tong Zhang ·

We investigate a generic problem of learning pairwise exponential family graphical models with pairwise sufficient statistics defined by a global mapping function, e.g., Mercer kernels. This subclass of pairwise graphical models allow us to flexibly capture complex interactions among variables beyond pairwise product. We propose two $\ell_1$-norm penalized maximum likelihood estimators to learn the model parameters from i.i.d. samples. The first one is a joint estimator which estimates all the parameters simultaneously. The second one is a node-wise conditional estimator which estimates the parameters individually for each node. For both estimators, we show that under proper conditions the extra flexibility gained in our model comes at almost no cost of statistical and computational efficiency. We demonstrate the advantages of our model over state-of-the-art methods on synthetic and real datasets.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here