Learning Rare Word Representations using Semantic Bridging

We propose a methodology that adapts graph embedding techniques (DeepWalk (Perozzi et al., 2014) and node2vec (Grover and Leskovec, 2016)) as well as cross-lingual vector space mapping approaches (Least Squares and Canonical Correlation Analysis) in order to merge the corpus and ontological sources of lexical knowledge. We also perform comparative analysis of the used algorithms in order to identify the best combination for the proposed system... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper