Learning Relatedness between Types with Prototypes for Relation Extraction
Relation schemas are often pre-defined for each relation dataset. Relation types can be related from different datasets and have overlapping semantics. We hypothesize we can combine these datasets according to the semantic relatedness between the relation types to overcome the problem of lack of training data. It is often easy to discover the connection between relation types based on relation names or annotation guides, but hard to measure the exact similarity and take advantage of the connection between the relation types from different datasets. We propose to use prototypical examples to represent each relation type and use these examples to augment related types from a different dataset. We obtain further improvement (ACE05) with this type augmentation over a strong baseline which uses multi-task learning between datasets to obtain better feature representation for relations. We make our implementation publicly available: https://github.com/fufrank5/relatedness
PDF Abstract