Learning Robust Sequential Recommenders through Confident Soft Labels

4 Nov 2023  ·  Shiguang Wu, Xin Xin, Pengjie Ren, Zhumin Chen, Jun Ma, Maarten de Rijke, Zhaochun Ren ·

Sequential recommenders that are trained on implicit feedback are usually learned as a multi-class classification task through softmax-based loss functions on one-hot class labels. However, one-hot training labels are sparse and may lead to biased training and sub-optimal performance. Dense, soft labels have been shown to help improve recommendation performance. But how to generate high-quality and confident soft labels from noisy sequential interactions between users and items is still an open question. We propose a new learning framework for sequential recommenders, CSRec, which introduces confident soft labels to provide robust guidance when learning from user-item interactions. CSRec contains a teacher module that generates high-quality and confident soft labels and a student module that acts as the target recommender and is trained on the combination of dense, soft labels and sparse, one-hot labels. We propose and compare three approaches to constructing the teacher module: (i) model-level, (ii) data-level, and (iii) training-level. To evaluate the effectiveness and generalization ability of CSRec, we conduct experiments using various state-of-the-art sequential recommendation models as the target student module on four benchmark datasets. Our experimental results demonstrate that CSRec is effective in training better performing sequential recommenders.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here