Learning shape distributions from large databases of healthy organs: applications to zero-shot and few-shot abnormal pancreas detection

We propose a scalable and data-driven approach to learn shape distributions from large databases of healthy organs. To do so, volumetric segmentation masks are embedded into a common probabilistic shape space that is learned with a variational auto-encoding network. The resulting latent shape representations are leveraged to derive zeroshot and few-shot methods for abnormal shape detection. The proposed distribution learning approach is illustrated on a large database of 1200 healthy pancreas shapes. Downstream qualitative and quantitative experiments are conducted on a separate test set of 224 pancreas from patients with mixed conditions. The abnormal pancreas detection AUC reached up to 65.41% in the zero-shot configuration, and 78.97% in the few-shot configuration with as few as 15 abnormal examples, outperforming a baseline approach based on the sole volume.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods