Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov Random Fields

17 Sep 2021  ·  Tatsuya Koyakumaru, Masahiro Yukawa, Eduardo Pavez, Antonio Ortega ·

This paper presents a convex-analytic framework to learn sparse graphs from data. While our problem formulation is inspired by an extension of the graphical lasso using the so-called combinatorial graph Laplacian framework, a key difference is the use of a nonconvex alternative to the $\ell_1$ norm to attain graphs with better interpretability. Specifically, we use the weakly-convex minimax concave penalty (the difference between the $\ell_1$ norm and the Huber function) which is known to yield sparse solutions with lower estimation bias than $\ell_1$ for regression problems. In our framework, the graph Laplacian is replaced in the optimization by a linear transform of the vector corresponding to its upper triangular part. Via a reformulation relying on Moreau's decomposition, we show that overall convexity is guaranteed by introducing a quadratic function to our cost function. The problem can be solved efficiently by the primal-dual splitting method, of which the admissible conditions for provable convergence are presented. Numerical examples show that the proposed method significantly outperforms the existing graph learning methods with reasonable CPU time.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here