Learning Spatially-Continuous Fiber Orientation Functions

10 Dec 2023  ·  Tyler Spears, P. Thomas Fletcher ·

Our understanding of the human connectome is fundamentally limited by the resolution of diffusion MR images. Reconstructing a connectome's constituent neural pathways with tractography requires following a continuous field of fiber directions. Typically, this field is found with simple trilinear interpolation in low-resolution, noisy diffusion MRIs. However, trilinear interpolation struggles following fine-scale changes in low-quality data. Recent deep learning methods in super-resolving diffusion MRIs have focused on upsampling to a fixed spatial grid, but this does not satisfy tractography's need for a continuous field. In this work, we propose FENRI, a novel method that learns spatially-continuous fiber orientation density functions from low-resolution diffusion-weighted images. To quantify FENRI's capabilities in tractography, we also introduce an expanded simulated dataset built for evaluating deep-learning tractography models. We demonstrate that FENRI accurately predicts high-resolution fiber orientations from realistic low-quality data, and that FENRI-based tractography offers improved streamline reconstruction over the current use of trilinear interpolation.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods