Learning stability guarantees for constrained switching linear systems from noisy observations

10 Feb 2023  ·  Adrien Banse, Zheming Wang, Raphaël M. Jungers ·

We present a data-driven framework based on Lyapunov theory to provide stability guarantees for a family of hybrid systems. In particular, we are interested in the asymptotic stability of switching linear systems whose switching sequence is constrained by labeled graphs, namely constrained switching linear systems. In order to do so, we provide chance-constrained bounds on stability guarantees, that can be obtained from a finite number of noisy observations. We first present a method providing stability guarantees from sampled trajectories in the hybrid state-space of the system. We then study the harder situation where one only observes the continuous part of the hybrid states. We show that in this case, one may still obtain formal chance-constrained stability guarantees. For this latter result we provide a new upper bound of general interest, also for model-based stability analysis

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here