Learning Surface Parameterization for Document Image Unwarping

29 Sep 2021  ·  Sagnik Das, Ke Ma, Zhixin Shu, Dimitris Samaras ·

In this paper, we present a novel approach to learn texture mapping for a 3D surface and apply it to document image unwarping. We propose an efficient method to learn surface parameterization by learning a continuous bijective mapping between 3D surface positions and 2D texture-space coordinates. Our surface parameterization network can be conveniently plugged into a differentiable rendering pipeline and trained using multi-view images and rendering loss. Recent work on differentiable rendering techniques for implicit surfaces has shown high-quality 3D scene reconstruction and view synthesis results. However, these methods typically learn the appearance color as a function of the surface points and lack explicit surface parameterization. Thus they do not allow texture map extraction or texture editing. By introducing explicit surface parameterization and learning with a recent differentiable renderer for implicit surfaces, we demonstrate state-of-the-art document-unwarping via texture extraction. We show that our approach can reconstruct high-frequency textures for arbitrary document shapes in both synthetic and real scenarios. We also demonstrate the usefulness of our system by applying it to document texture editing.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here