Learning the Number of Autoregressive Mixtures in Time Series Using the Gap Statistics

11 Sep 2015Jie DingMohammad NoshadVahid Tarokh

Using a proper model to characterize a time series is crucial in making accurate predictions. In this work we use time-varying autoregressive process (TVAR) to describe non-stationary time series and model it as a mixture of multiple stable autoregressive (AR) processes... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet