Learning to Equalize OTFS

17 Jul 2021  ·  Zhou Zhou, Lingjia Liu, Jiarui Xu, Robert Calderbank ·

Orthogonal Time Frequency Space (OTFS) is a novel framework that processes modulation symbols via a time-independent channel characterized by the delay-Doppler domain. The conventional waveform, orthogonal frequency division multiplexing (OFDM), requires tracking frequency selective fading channels over the time, whereas OTFS benefits from full time-frequency diversity by leveraging appropriate equalization techniques. In this paper, we consider a neural network-based supervised learning framework for OTFS equalization. Learning of the introduced neural network is conducted in each OTFS frame fulfilling an online learning framework: the training and testing datasets are within the same OTFS-frame over the air. Utilizing reservoir computing, a special recurrent neural network, the resulting one-shot online learning is sufficiently flexible to cope with channel variations among different OTFS frames (e.g., due to the link/rank adaptation and user scheduling in cellular networks). The proposed method does not require explicit channel state information (CSI) and simulation results demonstrate a lower bit error rate (BER) than conventional equalization methods in the low signal-to-noise (SNR) regime under large Doppler spreads. When compared with its neural network-based counterparts for OFDM, the introduced approach for OTFS will lead to a better tradeoff between the processing complexity and the equalization performance.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here