Learning to Interact: An Adaptive Interaction Framework for Knowledge Graph Embeddings

ICON 2020  ·  . Chandrahas, Nilesh Agrawal, Partha Talukdar ·

Knowledge Graph (KG) Embedding methods have been widely studied in the past few years and many methods have been proposed. These methods represent entities and relations in the KG as vectors in a vector space, trained to distinguish correct edges from the incorrect ones. For this distinction, simple functions of vectors’ dimensions, called interactions, are used. These interactions are used to calculate the candidate tail entity vector which is matched against all entities in the KG. However, for most of the existing methods, these interactions are fixed and manually specified. In this work, we propose an automated framework for discovering the interactions while training the KG Embeddings. The proposed method learns relevant interactions along with other parameters during training, allowing it to adapt to different datasets. Many of the existing methods can be seen as special cases of the proposed framework. We demonstrate the effectiveness of the proposed method on link prediction task by extensive experiments on multiple benchmark datasets.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here