Learning to Perform Downlink Channel Estimation in Massive MIMO Systems

6 Sep 2021  ·  Amin Ghazanfari, Trinh Van Chien, Emil Björnson, Erik G. Larsson ·

We study downlink (DL) channel estimation in a multi-cell Massive multiple-input multiple-output (MIMO) system operating in a time-division duplex. The users must know their effective channel gains to decode their received DL data signals. A common approach is to use the mean value as the estimate, motivated by channel hardening, but this is associated with a substantial performance loss in non-isotropic scattering environments. We propose two novel estimation methods. The first method is model-aided and utilizes asymptotic arguments to identify a connection between the effective channel gain and the average received power during a coherence block. The second one is a deep-learning-based approach that uses a neural network to identify a mapping between the available information and the effective channel gain. We compare the proposed methods against other benchmarks in terms of normalized mean-squared error and spectral efficiency (SE). The proposed methods provide substantial improvements, with the learning-based solution being the best of the considered estimators.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here