Learning to Prove Trigonometric Identities

14 Jul 2022  ·  Zhou Liu, YuJun Li, Zhengying Liu, Lin Li, Zhenguo Li ·

Automatic theorem proving with deep learning methods has attracted attentions recently. In this paper, we construct an automatic proof system for trigonometric identities. We define the normalized form of trigonometric identities, design a set of rules for the proof and put forward a method which can generate theoretically infinite trigonometric identities. Our goal is not only to complete the proof, but to complete the proof in as few steps as possible. For this reason, we design a model to learn proof data generated by random BFS (rBFS), and it is proved theoretically and experimentally that the model can outperform rBFS after a simple imitation learning. After further improvement through reinforcement learning, we get AutoTrig, which can give proof steps for identities in almost as short steps as BFS (theoretically shortest method), with a time cost of only one-thousandth. In addition, AutoTrig also beats Sympy, Matlab and human in the synthetic dataset, and performs well in many generalization tasks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here