Learning to See Analogies: A Connectionist Exploration

18 Jan 2020  ·  Douglas S. Blank ·

This dissertation explores the integration of learning and analogy-making through the development of a computer program, called Analogator, that learns to make analogies by example. By "seeing" many different analogy problems, along with possible solutions, Analogator gradually develops an ability to make new analogies. That is, it learns to make analogies by analogy. This approach stands in contrast to most existing research on analogy-making, in which typically the a priori existence of analogical mechanisms within a model is assumed. The present research extends standard connectionist methodologies by developing a specialized associative training procedure for a recurrent network architecture. The network is trained to divide input scenes (or situations) into appropriate figure and ground components. Seeing one scene in terms of a particular figure and ground provides the context for seeing another in an analogous fashion. After training, the model is able to make new analogies between novel situations. Analogator has much in common with lower-level perceptual models of categorization and recognition; it thus serves as a unifying framework encompassing both high-level analogical learning and low-level perception. This approach is compared and contrasted with other computational models of analogy-making. The model's training and generalization performance is examined, and limitations are discussed.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here