Learning To Solve Circuit-SAT: An Unsupervised Differentiable Approach

Recent efforts to combine Representation Learning with Formal Methods, commonly known as the Neuro-Symbolic Methods, have given rise to a new trend of applying rich neural architectures to solve classical combinatorial optimization problems. In this paper, we propose a neural framework that can learn to solve the Circuit Satisfiability problem. Our framework is built upon two fundamental contributions: a rich embedding architecture that encodes the problem structure and an end-to-end differentiable training procedure that mimics Reinforcement Learning and trains the model directly toward solving the SAT problem. The experimental results show the superior out-of-sample generalization performance of our framework compared to the recently developed NeuroSAT method.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here