Learning Ultrametric Trees for Optimal Transport Regression

21 Oct 2022  ·  Samantha Chen, Puoya Tabaghi, Yusu Wang ·

Optimal transport provides a metric which quantifies the dissimilarity between probability measures. For measures supported in discrete metric spaces, finding the optimal transport distance has cubic time complexity in the size of the space. However, measures supported on trees admit a closed-form optimal transport that can be computed in linear time. In this paper, we aim to find an optimal tree structure for a given discrete metric space so that the tree-Wasserstein distance approximates the optimal transport distance in the original space. One of our key ideas is to cast the problem in ultrametric spaces. This helps us optimize over the space of ultrametric trees -- a mixed-discrete and continuous optimization problem -- via projected gradient decent over the space of ultrametric matrices. During optimization, we project the parameters to the ultrametric space via a hierarchical minimum spanning tree algorithm, equivalent to the closest projection to ultrametrics under the supremum norm. Experimental results on real datasets show that our approach outperforms previous approaches (e.g. Flowtree, Quadtree) in approximating optimal transport distances. Finally, experiments on synthetic data generated on ground truth trees show that our algorithm can accurately uncover the underlying trees.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here