Semi-supervised Vector-valued Learning: Improved Bounds and Algorithms

11 Sep 2019  ·  Jian Li, Yong liu, Weiping Wang ·

Vector-valued learning, where the output space admits a vector-valued structure, is an important problem that covers a broad family of important domains, e.g. multi-task learning and transfer learning. Using local Rademacher complexity and unlabeled data, we derive novel semi-supervised excess risk bounds for general vector-valued learning from both kernel perspective and linear perspective. The derived bounds are much sharper than existing ones and the convergence rates are improved from the square root of labeled sample size to the square root of total sample size or directly dependent on labeled sample size. Motivated by our theoretical analysis, we propose a general semi-supervised algorithm for efficiently learning vector-valued functions, incorporating both local Rademacher complexity and Laplacian regularization. Extensive experimental results illustrate the proposed algorithm significantly outperforms the compared methods, which coincides with our theoretical findings.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here