The Selected-completely-at-random Complementary Label is a Practical Weak Supervision for Multi-class Classification

27 Nov 2023  ·  Wei Wang, Takashi Ishida, Yu-Jie Zhang, Gang Niu, Masashi Sugiyama ·

Complementary-label learning is a weakly supervised learning problem in which each training example is associated with one or multiple complementary labels indicating the classes to which it does not belong. Existing consistent approaches have relied on the uniform distribution assumption to model the generation of complementary labels, or on an ordinary-label training set to estimate the transition matrix in non-uniform cases. However, either condition may not be satisfied in real-world scenarios. In this paper, we propose a novel consistent approach that does not rely on these conditions. Inspired by the positive-unlabeled (PU) learning literature, we propose an unbiased risk estimator based on the Selected Completely At Random assumption for complementary-label learning. We then introduce a risk-correction approach to address overfitting problems. Furthermore, we find that complementary-label learning can be expressed as a set of negative-unlabeled binary classification problems when using the one-versus-rest strategy. Extensive experimental results on both synthetic and real-world benchmark datasets validate the superiority of our proposed approach over state-of-the-art methods.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here