Learning without Concentration

1 Jan 2014Shahar Mendelson

We obtain sharp bounds on the performance of Empirical Risk Minimization performed in a convex class and with respect to the squared loss, without assuming that class members and the target are bounded functions or have rapidly decaying tails. Rather than resorting to a concentration-based argument, the method used here relies on a `small-ball' assumption and thus holds for classes consisting of heavy-tailed functions and for heavy-tailed targets... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet