A Bayesian Learning Algorithm for Unknown Zero-sum Stochastic Games with an Arbitrary Opponent

8 Sep 2021  ·  Mehdi Jafarnia-Jahromi, Rahul Jain, Ashutosh Nayyar ·

In this paper, we propose Posterior Sampling Reinforcement Learning for Zero-sum Stochastic Games (PSRL-ZSG), the first online learning algorithm that achieves Bayesian regret bound of $O(HS\sqrt{AT})$ in the infinite-horizon zero-sum stochastic games with average-reward criterion. Here $H$ is an upper bound on the span of the bias function, $S$ is the number of states, $A$ is the number of joint actions and $T$ is the horizon. We consider the online setting where the opponent can not be controlled and can take any arbitrary time-adaptive history-dependent strategy. Our regret bound improves on the best existing regret bound of $O(\sqrt[3]{DS^2AT^2})$ by Wei et al. (2017) under the same assumption and matches the theoretical lower bound in $T$.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here