LegendreTron: Uprising Proper Multiclass Loss Learning

27 Jan 2023  ·  Kevin Lam, Christian Walder, Spiridon Penev, Richard Nock ·

Loss functions serve as the foundation of supervised learning and are often chosen prior to model development. To avoid potentially ad hoc choices of losses, statistical decision theory describes a desirable property for losses known as \emph{properness}, which asserts that Bayes' rule is optimal. Recent works have sought to \emph{learn losses} and models jointly. Existing methods do this by fitting an inverse canonical link function which monotonically maps $\mathbb{R}$ to $[0,1]$ to estimate probabilities for binary problems. In this paper, we extend monotonicity to maps between $\mathbb{R}^{C-1}$ and the projected probability simplex $\tilde{\Delta}^{C-1}$ by using monotonicity of gradients of convex functions. We present {\sc LegendreTron} as a novel and practical method that jointly learns \emph{proper canonical losses} and probabilities for multiclass problems. Tested on a benchmark of domains with up to 1,000 classes, our experimental results show that our method consistently outperforms the natural multiclass baseline under a $t$-test at 99% significance on all datasets with greater than 10 classes.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods