Differentiable Unsupervised Feature Selection based on a Gated Laplacian

Scientific observations may consist of a large number of variables (features). Identifying a subset of meaningful features is often ignored in unsupervised learning, despite its potential for unraveling clear patterns hidden in the ambient space. In this paper, we present a method for unsupervised feature selection, and we demonstrate its use for the task of clustering. We propose a differentiable loss function that combines the Laplacian score, which favors low-frequency features, with a gating mechanism for feature selection. We improve the Laplacian score, by replacing it with a gated variant computed on a subset of features. This subset is obtained using a continuous approximation of Bernoulli variables whose parameters are trained to gate the full feature space. We mathematically motivate the proposed approach and demonstrate that in the high noise regime, it is crucial to compute the Laplacian on the gated inputs, rather than on the full feature set. Experimental demonstration of the efficacy of the proposed approach and its advantage over current baselines is provided using several real-world examples.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here