Leveraging Compositional Methods for Modeling and Verification of an Autonomous Taxi System
We apply a compositional formal modeling and verification method to an autonomous aircraft taxi system. We provide insights into the modeling approach and we identify several research areas where further development is needed. Specifically, we identify the following needs: (1) semantics of composition of viewpoints expressed in different specification languages, and tools to reason about heterogeneous declarative models; (2) libraries of formal models for autonomous systems to speed up modeling and enable efficient reasoning; (3) methods to lift verification results generated by automated reasoning tools to the specification level; (4) probabilistic contract frameworks to reason about imperfect implementations; (5) standard high-level functional architectures for autonomous systems; and (6) a theory of higher-order contracts. We believe that addressing these research needs, among others, could improve the adoption of formal methods in the design of autonomous systems including learning-enabled systems, and increase confidence in their safe operations.
PDF Abstract