Leveraging Graph and Deep Learning Uncertainties to Detect Anomalous Trajectories

4 Jul 2021  ·  Sandeep Kumar Singh, Jaya Shradha Fowdur, Jakob Gawlikowski, Daniel Medina ·

Understanding and representing traffic patterns are key to detecting anomalous trajectories in the transportation domain. However, some trajectories can exhibit heterogeneous maneuvering characteristics despite confining to normal patterns. Thus, we propose a novel graph-based trajectory representation and association scheme for extraction and confederation of traffic movement patterns, such that data patterns and uncertainty can be learned by deep learning (DL) models. This paper proposes the usage of a recurrent neural network (RNN)-based evidential regression model, which can predict trajectory at future timesteps as well as estimate the data and model uncertainties associated, to detect maritime anomalous trajectories, such as unusual vessel maneuvering, using automatic identification system (AIS) data. Furthermore, we utilize evidential deep learning classifiers to detect unusual turns of vessels and the loss of transmitted signal using predicted class probabilities with associated uncertainties. Our experimental results suggest that the graphical representation of traffic patterns improves the ability of the DL models, such as evidential and Monte Carlo dropout, to learn the temporal-spatial correlation of data and associated uncertainties. Using different datasets and experiments, we demonstrate that the estimated prediction uncertainty yields fundamental information for the detection of traffic anomalies in the maritime and, possibly in other domains.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here