Lexical Disambiguation of Igbo using Diacritic Restoration

WS 2017  ·  Ignatius Ezeani, Mark Hepple, Ikechukwu Onyenwe ·

Properly written texts in Igbo, a low-resource African language, are rich in both orthographic and tonal diacritics. Diacritics are essential in capturing the distinctions in pronunciation and meaning of words, as well as in lexical disambiguation. Unfortunately, most electronic texts in diacritic languages are written without diacritics. This makes diacritic restoration a necessary step in corpus building and language processing tasks for languages with diacritics. In our previous work, we built some n-gram models with simple smoothing techniques based on a closed-world assumption. However, as a classification task, diacritic restoration is well suited for and will be more generalisable with machine learning. This paper, therefore, presents a more standard approach to dealing with the task which involves the application of machine learning algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here