Lifted Proximal Operator Machines

5 Nov 2018  ·  Jia Li, Cong Fang, Zhouchen Lin ·

We propose a new optimization method for training feed-forward neural networks. By rewriting the activation function as an equivalent proximal operator, we approximate a feed-forward neural network by adding the proximal operators to the objective function as penalties, hence we call the lifted proximal operator machine (LPOM). LPOM is block multi-convex in all layer-wise weights and activations. This allows us to use block coordinate descent to update the layer-wise weights and activations in parallel. Most notably, we only use the mapping of the activation function itself, rather than its derivatives, thus avoiding the gradient vanishing or blow-up issues in gradient based training methods. So our method is applicable to various non-decreasing Lipschitz continuous activation functions, which can be saturating and non-differentiable. LPOM does not require more auxiliary variables than the layer-wise activations, thus using roughly the same amount of memory as stochastic gradient descent (SGD) does. We further prove the convergence of updating the layer-wise weights and activations. Experiments on MNIST and CIFAR-10 datasets testify to the advantages of LPOM.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here