Lifting the Information Ratio: An Information-Theoretic Analysis of Thompson Sampling for Contextual Bandits

27 May 2022  ·  Gergely Neu, Julia Olkhovskaya, Matteo Papini, Ludovic Schwartz ·

We study the Bayesian regret of the renowned Thompson Sampling algorithm in contextual bandits with binary losses and adversarially-selected contexts. We adapt the information-theoretic perspective of \cite{RvR16} to the contextual setting by considering a lifted version of the information ratio defined in terms of the unknown model parameter instead of the optimal action or optimal policy as done in previous works on the same setting. This allows us to bound the regret in terms of the entropy of the prior distribution through a remarkably simple proof, and with no structural assumptions on the likelihood or the prior. The extension to priors with infinite entropy only requires a Lipschitz assumption on the log-likelihood. An interesting special case is that of logistic bandits with $d$-dimensional parameters, $K$ actions, and Lipschitz logits, for which we provide a $\widetilde{O}(\sqrt{dKT})$ regret upper-bound that does not depend on the smallest slope of the sigmoid link function.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here