LightGCNet: A Lightweight Geometric Constructive Neural Network for Data-Driven Soft sensors

19 Dec 2023  ·  Jing Nan, Yan Qin, Wei Dai, Chau Yuen ·

Data-driven soft sensors provide a potentially cost-effective and more accurate modeling approach to measure difficult-to-measure indices in industrial processes compared to mechanistic approaches. Artificial intelligence (AI) techniques, such as deep learning, have become a popular soft sensors modeling approach in the area of machine learning and big data. However, soft sensors models based deep learning potentially lead to complex model structures and excessive training time. In addition, industrial processes often rely on distributed control systems (DCS) characterized by resource constraints. Herein, guided by spatial geometric, a lightweight geometric constructive neural network, namely LightGCNet, is proposed, which utilizes compact angle constraint to assign the hidden parameters from dynamic intervals. At the same time, a node pool strategy and spatial geometric relationships are used to visualize and optimize the process of assigning hidden parameters, enhancing interpretability. In addition, the universal approximation property of LightGCNet is proved by spatial geometric analysis. Two versions algorithmic implementations of LightGCNet are presented in this article. Simulation results concerning both benchmark datasets and the ore grinding process indicate remarkable merits of LightGCNet in terms of small network size, fast learning speed, and sound generalization.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here