Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls

We propose a rank-$k$ variant of the classical Frank-Wolfe algorithm to solve convex optimization over a trace-norm ball. Our algorithm replaces the top singular-vector computation ($1$-SVD) in Frank-Wolfe with a top-$k$ singular-vector computation ($k$-SVD), which can be done by repeatedly applying $1$-SVD $k$ times. Alternatively, our algorithm can be viewed as a rank-$k$ restricted version of projected gradient descent. We show that our algorithm has a linear convergence rate when the objective function is smooth and strongly convex, and the optimal solution has rank at most $k$. This improves the convergence rate and the total time complexity of the Frank-Wolfe method and its variants.

PDF Abstract NeurIPS 2017 PDF NeurIPS 2017 Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here