Linear Convergence of Distributed Mirror Descent with Integral Feedback for Strongly Convex Problems

24 Nov 2020  ·  Youbang Sun, Shahin Shahrampour ·

Distributed optimization often requires finding the minimum of a global objective function written as a sum of local functions. A group of agents work collectively to minimize the global function. We study a continuous-time decentralized mirror descent algorithm that uses purely local gradient information to converge to the global optimal solution. The algorithm enforces consensus among agents using the idea of integral feedback. Recently, Sun and Shahrampour (2020) studied the asymptotic convergence of this algorithm for when the global function is strongly convex but local functions are convex. Using control theory tools, in this work, we prove that the algorithm indeed achieves (local) exponential convergence. We also provide a numerical experiment on a real data-set as a validation of the convergence speed of our algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here