Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave Saddle Point Problems without Strong Convexity

5 Feb 2018  ·  Simon S. Du, Wei Hu ·

We consider the convex-concave saddle point problem $\min_{x}\max_{y} f(x)+y^\top A x-g(y)$ where $f$ is smooth and convex and $g$ is smooth and strongly convex. We prove that if the coupling matrix $A$ has full column rank, the vanilla primal-dual gradient method can achieve linear convergence even if $f$ is not strongly convex... Our result generalizes previous work which either requires $f$ and $g$ to be quadratic functions or requires proximal mappings for both $f$ and $g$. We adopt a novel analysis technique that in each iteration uses a "ghost" update as a reference, and show that the iterates in the primal-dual gradient method converge to this "ghost" sequence. Using the same technique we further give an analysis for the primal-dual stochastic variance reduced gradient (SVRG) method for convex-concave saddle point problems with a finite-sum structure. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here