Linear Regression with an Unknown Permutation: Statistical and Computational Limits

9 Aug 2016  ·  Ashwin Pananjady, Martin J. Wainwright, Thomas A. Courtade ·

Consider a noisy linear observation model with an unknown permutation, based on observing $y = \Pi^* A x^* + w$, where $x^* \in \mathbb{R}^d$ is an unknown vector, $\Pi^*$ is an unknown $n \times n$ permutation matrix, and $w \in \mathbb{R}^n$ is additive Gaussian noise. We analyze the problem of permutation recovery in a random design setting in which the entries of the matrix $A$ are drawn i.i.d. from a standard Gaussian distribution, and establish sharp conditions on the SNR, sample size $n$, and dimension $d$ under which $\Pi^*$ is exactly and approximately recoverable. On the computational front, we show that the maximum likelihood estimate of $\Pi^*$ is NP-hard to compute, while also providing a polynomial time algorithm when $d =1$.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here