Linear solution to the minimal absolute pose rolling shutter problem

30 Dec 2018  ·  Zuzana Kukelova, Cenek Albl, Akihiro Sugimoto, Tomas Pajdla ·

This paper presents new efficient solutions to the rolling shutter camera absolute pose problem. Unlike the state-of-the-art polynomial solvers, we approach the problem using simple and fast linear solvers in an iterative scheme. We present several solutions based on fixing different sets of variables and investigate the performance of them thoroughly. We design a new alternation strategy that estimates all parameters in each iteration linearly by fixing just the non-linear terms. Our best 6-point solver, based on the new alternation technique, shows an identical or even better performance than the state-of-the-art R6P solver and is two orders of magnitude faster. In addition, a linear non-iterative solver is presented that requires a non-minimal number of 9 correspondences but provides even better results than the state-of-the-art R6P. Moreover, all proposed linear solvers provide a single solution while the state-of-the-art R6P provides up to 20 solutions which have to be pruned by expensive verification.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here