LiQuiD-MIMO Radar: Distributed MIMO Radar with Low-Bit Quantization

16 Feb 2023  ·  Yikun Xiang, Feng Xi, Shengyao Chen ·

Distributed MIMO radar is known to achieve superior sensing performance by employing widely separated antennas. However, it is challenging to implement a low-complexity distributed MIMO radar due to the complex operations at both the receivers and the fusion center. This work proposed a low-bit quantized distributed MIMO (LiQuiD-MIMO) radar to significantly reduce the burden of signal acquisition and data transmission. In the LiQuiD-MIMO radar, the widely-separated receivers are restricted to operating with low-resolution ADCs and deliver the low-bit quantized data to the fusion center. At the fusion center, the induced quantization distortion is explicitly compensated via digital processing. By exploiting the inherent structure of our problem, a quantized version of the robust principal component analysis (RPCA) problem is formulated to simultaneously recover the low-rank target information matrices as well as the sparse data transmission errors. The least squares-based method is then employed to estimate the targets' positions and velocities from the recovered target information matrices. Numerical experiments demonstrate that the proposed LiQuiD-MIMO radar, configured with the developed algorithm, can achieve accurate target parameter estimation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here