List-Decodable Mean Estimation via Iterative Multi-Filtering

We study the problem of {\em list-decodable mean estimation} for bounded covariance distributions. Specifically, we are given a set $T$ of points in $\mathbb{R}^d$ with the promise that an unknown $\alpha$-fraction of points in $T$, where $0< \alpha < 1/2$, are drawn from an unknown mean and bounded covariance distribution $D$, and no assumptions are made on the remaining points. The goal is to output a small list of hypothesis vectors such that at least one of them is close to the mean of $D$. We give the first practically viable estimator for this problem. In more detail, our algorithm is sample and computationally efficient, and achieves information-theoretically near-optimal error. While the only prior algorithm for this setting inherently relied on the ellipsoid method, our algorithm is iterative and only uses spectral techniques. Our main technical innovation is the design of a soft outlier removal procedure for high-dimensional heavy-tailed datasets with a majority of outliers.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here