Local High-order Regularization on Data Manifolds

The common graph Laplacian regularizer is well-established in semi-supervised learning and spectral dimensionality reduction. However, as a first-order regularizer, it can lead to degenerate functions in high-dimensional manifolds. The iterated graph Laplacian enables high-order regularization, but it has a high computational complexity and so cannot be applied to large problems. We introduce a new regularizer which is globally high order and so does not suffer from the degeneracy of the graph Laplacian regularizer, but is also sparse for efficient computation in semi-supervised learning applications. We reduce computational complexity by building a local first-order approximation of the manifold as a surrogate geometry, and construct our high-order regularizer based on local derivative evaluations therein. Experiments on human body shape and pose analysis demonstrate the effectiveness and efficiency of our method.

PDF Abstract CVPR 2015 PDF CVPR 2015 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here