Local Stochastic Approximation: A Unified View of Federated Learning and Distributed Multi-Task Reinforcement Learning Algorithms

24 Jun 2020Thinh T. Doan

Motivated by broad applications in reinforcement learning and federated learning, we study local stochastic approximation over a network of agents, where their goal is to find the root of an operator composed of the local operators at the agents. Our focus is to characterize the finite-time performance of this method when the data at each agent are generated from Markov processes, and hence they are dependent... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.