Log-linear Combinations of Monolingual and Bilingual Neural Machine Translation Models for Automatic Post-Editing

WS 2016 Marcin Junczys-DowmuntRoman Grundkiewicz

This paper describes the submission of the AMU (Adam Mickiewicz University) team to the Automatic Post-Editing (APE) task of WMT 2016. We explore the application of neural translation models to the APE problem and achieve good results by treating different models as components in a log-linear model, allowing for multiple inputs (the MT-output and the source) that are decoded to the same target language (post-edited translations)... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet