Look-ahead Attention for Generation in Neural Machine Translation

30 Aug 2017Long ZhouJiajun ZhangChengqing Zong

The attention model has become a standard component in neural machine translation (NMT) and it guides translation process by selectively focusing on parts of the source sentence when predicting each target word. However, we find that the generation of a target word does not only depend on the source sentence, but also rely heavily on the previous generated target words, especially the distant words which are difficult to model by using recurrent neural networks... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet