Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Fine-Grained Image Recognition

CVPR 2017  ·  Jianlong Fu, Heliang Zheng, Tao Mei ·

Recognizing fine-grained categories (e.g., bird species) is difficult due to the challenges of discriminative region localization and fine-grained feature learning. Existing approaches predominantly solve these challenges independently, while neglecting the fact that region detection and fine-grained feature learning are mutually correlated and thus can reinforce each other... In this paper, we propose a novel recurrent attention convolutional neural network (RA-CNN) which recursively learns discriminative region attention and region-based feature representation at multiple scales in a mutual reinforced way. The learning at each scale consists of a classification sub-network and an attention proposal sub-network (APN). The APN starts from full images, and iteratively generates region attention from coarse to fine by taking previous prediction as a reference, while the finer scale network takes as input an amplified attended region from previous scale in a recurrent way. The proposed RA-CNN is optimized by an intra-scale classification loss and an inter-scale ranking loss, to mutually learn accurate region attention and fine-grained representation. RA-CNN does not need bounding box/part annotations and can be trained end-to-end. We conduct comprehensive experiments and show that RA-CNN achieves the best performance in three fine-grained tasks, with relative accuracy gains of 3.3%, 3.7%, 3.8%, on CUB Birds, Stanford Dogs and Stanford Cars, respectively. read more

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here