Losing Control of your Network? Try Resilience Theory

28 Jun 2023  ·  Jean-Baptiste Bouvier, Sai Pushpak Nandanoori, Melkior Ornik ·

Resilience of cyber-physical networks to unexpected failures is a critical need widely recognized across domains. For instance, power grids, telecommunication networks, transportation infrastructures and water treatment systems have all been subject to disruptive malfunctions and catastrophic cyber-attacks. Following such adverse events, we investigate scenarios where a node of a linear network suffers a loss of control authority over some of its actuators. These actuators are not following the controller's commands and are instead producing undesirable outputs. The repercussions of such a loss of control can propagate and destabilize the whole network despite the malfunction occurring at a single node. To assess system vulnerability, we establish resilience conditions for networks with a subsystem enduring a loss of control authority over some of its actuators. Furthermore, we quantify the destabilizing impact on the overall network when such a malfunction perturbs a nonresilient subsystem. We illustrate our resilience conditions on two academic examples, on an islanded microgrid, and on the linearized IEEE 39-bus system.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here