Lossy Compression with Gaussian Diffusion

17 Jun 2022  ·  Lucas Theis, Tim Salimans, Matthew D. Hoffman, Fabian Mentzer ·

We consider a novel lossy compression approach based on unconditional diffusion generative models, which we call DiffC. Unlike modern compression schemes which rely on transform coding and quantization to restrict the transmitted information, DiffC relies on the efficient communication of pixels corrupted by Gaussian noise. We implement a proof of concept and find that it works surprisingly well despite the lack of an encoder transform, outperforming the state-of-the-art generative compression method HiFiC on ImageNet 64x64. DiffC only uses a single model to encode and denoise corrupted pixels at arbitrary bitrates. The approach further provides support for progressive coding, that is, decoding from partial bit streams. We perform a rate-distortion analysis to gain a deeper understanding of its performance, providing analytical results for multivariate Gaussian data as well as theoretic bounds for general distributions. Furthermore, we prove that a flow-based reconstruction achieves a 3 dB gain over ancestral sampling at high bitrates.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods