Low-complexity acoustic scene classification in DCASE 2022 Challenge

This paper presents an analysis of the Low-Complexity Acoustic Scene Classification task in DCASE 2022 Challenge. The task was a continuation from the previous years, but the low-complexity requirements were changed to the following: the maximum number of allowed parameters, including the zero-valued ones, was 128 K, with parameters being represented using INT8 numerical format; and the maximum number of multiply-accumulate operations at inference time was 30 million. The provided baseline system is a convolutional neural network which employs post-training quantization of parameters, resulting in 46.5 K parameters, and 29.23 million multiply-and-accumulate operations (MMACs). Its performance on the evaluation data is 44.2% accuracy and 1.532 log-loss. In comparison, the top system in the challenge obtained an accuracy of 59.6% and a log loss of 1.091, having 121 K parameters and 28 MMACs. The task received 48 submissions from 19 different teams, most of which outperformed the baseline system.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here