Low-Complexity Control for a Class of Uncertain MIMO Nonlinear Systems under Generalized Time-Varying Output Constraints

This paper introduces a novel control framework to address the satisfaction of multiple time-varying output constraints in uncertain high-order MIMO nonlinear control systems. Unlike existing methods, which often assume that the constraints are always decoupled and feasible, our approach can handle coupled time-varying constraints even in the presence of potential infeasibilities. First, it is shown that satisfying multiple constraints essentially boils down to ensuring the positivity of a scalar variable, representing the signed distance from the boundary of the time-varying output-constrained set. To achieve this, a single consolidating constraint is designed that, when satisfied, guarantees convergence to and invariance of the time-varying output-constrained set within a user-defined finite time. Next, a novel robust and low-complexity feedback controller is proposed to ensure the satisfaction of the consolidating constraint. Additionally, we provide a mechanism for online modification of the consolidating constraint to find a least violating solution when the constraints become mutually infeasible for some time. Finally, simulation examples of trajectory and region tracking for a mobile robot validate the proposed approach.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here